39.2: Invited Paper: First, Faster, Further: Competitive Advantage with Next-Generation Materials Development
Paul Winget
Schrödinger Inc., New York, NY 10036, United States EMNI Co., Ltd., 14, Seocheon-ro 201 beon-gil, Yongin, Republic of Korea, 1711
Search for more papers by this authorH. Shaun Kwak
Schrödinger Inc., New York, NY 10036, United States EMNI Co., Ltd., 14, Seocheon-ro 201 beon-gil, Yongin, Republic of Korea, 1711
Search for more papers by this authorPavel Dub
Schrödinger Inc., New York, NY 10036, United States EMNI Co., Ltd., 14, Seocheon-ro 201 beon-gil, Yongin, Republic of Korea, 1711
Search for more papers by this authorHadi Abroshan
Schrödinger Inc., New York, NY 10036, United States EMNI Co., Ltd., 14, Seocheon-ro 201 beon-gil, Yongin, Republic of Korea, 1711
Search for more papers by this authorDave Giesen
Schrödinger Inc., New York, NY 10036, United States EMNI Co., Ltd., 14, Seocheon-ro 201 beon-gil, Yongin, Republic of Korea, 1711
Search for more papers by this authorJun Li
Schrödinger Inc., New York, NY 10036, United States EMNI Co., Ltd., 14, Seocheon-ro 201 beon-gil, Yongin, Republic of Korea, 1711
Search for more papers by this authorYixiang Cao
Schrödinger Inc., New York, NY 10036, United States EMNI Co., Ltd., 14, Seocheon-ro 201 beon-gil, Yongin, Republic of Korea, 1711
Search for more papers by this authorThomas J. Mustard
Schrödinger Inc., New York, NY 10036, United States EMNI Co., Ltd., 14, Seocheon-ro 201 beon-gil, Yongin, Republic of Korea, 1711
Search for more papers by this authorJianxin Duan
Schrödinger Inc., New York, NY 10036, United States EMNI Co., Ltd., 14, Seocheon-ro 201 beon-gil, Yongin, Republic of Korea, 1711
Search for more papers by this authorChristopher T. Brown
Schrödinger Inc., New York, NY 10036, United States EMNI Co., Ltd., 14, Seocheon-ro 201 beon-gil, Yongin, Republic of Korea, 1711
Search for more papers by this authorMathew D. Halls
Schrödinger Inc., New York, NY 10036, United States EMNI Co., Ltd., 14, Seocheon-ro 201 beon-gil, Yongin, Republic of Korea, 1711
Search for more papers by this authorPaul Winget
Schrödinger Inc., New York, NY 10036, United States EMNI Co., Ltd., 14, Seocheon-ro 201 beon-gil, Yongin, Republic of Korea, 1711
Search for more papers by this authorH. Shaun Kwak
Schrödinger Inc., New York, NY 10036, United States EMNI Co., Ltd., 14, Seocheon-ro 201 beon-gil, Yongin, Republic of Korea, 1711
Search for more papers by this authorPavel Dub
Schrödinger Inc., New York, NY 10036, United States EMNI Co., Ltd., 14, Seocheon-ro 201 beon-gil, Yongin, Republic of Korea, 1711
Search for more papers by this authorHadi Abroshan
Schrödinger Inc., New York, NY 10036, United States EMNI Co., Ltd., 14, Seocheon-ro 201 beon-gil, Yongin, Republic of Korea, 1711
Search for more papers by this authorDave Giesen
Schrödinger Inc., New York, NY 10036, United States EMNI Co., Ltd., 14, Seocheon-ro 201 beon-gil, Yongin, Republic of Korea, 1711
Search for more papers by this authorJun Li
Schrödinger Inc., New York, NY 10036, United States EMNI Co., Ltd., 14, Seocheon-ro 201 beon-gil, Yongin, Republic of Korea, 1711
Search for more papers by this authorYixiang Cao
Schrödinger Inc., New York, NY 10036, United States EMNI Co., Ltd., 14, Seocheon-ro 201 beon-gil, Yongin, Republic of Korea, 1711
Search for more papers by this authorThomas J. Mustard
Schrödinger Inc., New York, NY 10036, United States EMNI Co., Ltd., 14, Seocheon-ro 201 beon-gil, Yongin, Republic of Korea, 1711
Search for more papers by this authorJianxin Duan
Schrödinger Inc., New York, NY 10036, United States EMNI Co., Ltd., 14, Seocheon-ro 201 beon-gil, Yongin, Republic of Korea, 1711
Search for more papers by this authorChristopher T. Brown
Schrödinger Inc., New York, NY 10036, United States EMNI Co., Ltd., 14, Seocheon-ro 201 beon-gil, Yongin, Republic of Korea, 1711
Search for more papers by this authorMathew D. Halls
Schrödinger Inc., New York, NY 10036, United States EMNI Co., Ltd., 14, Seocheon-ro 201 beon-gil, Yongin, Republic of Korea, 1711
Search for more papers by this authorAbstract
We have entered a paradigm-changing era in the way chemists innovate. Many fields, such as automotive engineering and particle physics, rely today on accurate simulation before experimentation. In recent years, chemistry has entered a new phase of chemical solution design powered by a rich set of physics-based and augmented intelligence capabilities. This talk will present select case studies illustrating some of our latest physics-based simulation technology for developing and optimizing OLED materials. We will also introduce an enterprise informatics platform (LiveDesignTM) focused on chemical discovery, enabling multidisciplinary teams to amplify their development cycle with collaboration on a global scale.
References
- 1 Collins R. The most significant Materials News from 2021, IDTechEx, 2021, Nov 30th. Available from: https://www.idtechex.com.
- 2 Settle M, Hussain M Driving Sustainability at Reckitt through the Adoption of Molecular Simulations. 2021, March 21. Available from: https://extrapolations.com.
- 3 Settle M, Hussain M Driving Sustainability at Reckitt through the Adoption of Molecular Simulations. 2021, March 21. Available from: https://extrapolations.com.
- 4 Abroshan H, Winget P, Kwak HS, Brown CT, Halls MD. Organic radical emitters: nature of doublet excitons in emissive layers. Physical Chemistry Chemical Physics. 2022, 24(27), 16891-16899.
- 5 Kwak HS, An Y, Giesen DJ, Hughes TF, Brown CT, Leswing K, Abroshan H, Halls MD Design of organic electronic materials with a goal-directed generative model powered by deep neural networks and high-throughput molecular simulations. Frontiers in Chemistry 2022, 9, 800370.
- 6 Abroshan H, Chandrasekaran A, Winget P, An Y, Kwak S, Brown CT, Morisato T, Halls MD. 66, 3: Active Learning for the Design of Novel OLED Materials. In SID Symposium Digest of Technical Papers 2022, 885-888.
- 7 Abroshan H, Winget P, Kwak HS, An Y, Brown CT, Halls MD. Machine Learning for the Design of Novel OLED Materials. In Machine Learning in Materials Informatics: Methods and Applications 2022, 33-49.
- 8 Abroshan H, Kwak HS, An Y, Brown CT, Chandrasekaran A, Winget P, Halls MD. Active Learning Accelerates Design and Optimization of Hole-Transporting Materials for Organic Electronics. Frontiers in Chemistry. 2022, 9, 800371.
- 9 Marrink SJ, Risselada HJ, Yefimov S, Tieleman DP, de Vries AH The MARTINI Force Field: Coarse Grained Model for Biomolecular Simulations J. Phys. Chem. B 2007, 111, 27, 7812–7824.
- 10 Abroshan H, Zhang Y, Zhang X, Fuentes-Hernandez C, Barlow S, Coropceanu V, Marder SR, Kippelen B, Brédas JL. Thermally activated delayed fluorescence sensitization for highly efficient blue, fluorescent emitters. Advanced Functional Materials. 2020, 52, 2005898.
- 11 Abroshan H, Cho E, Coropceanu V, Brédas JL. Suppression of concentration quenching in ortho-substituted thermally activated delayed fluorescence emitters. Advanced Theory and Simulations. 2020, 3(2), 1900185.
- 12 Abroshan H, Coropceanu V, Brédas JL. Hyperfluorescence-based emission in purely organic materials: Suppression of energy-loss mechanisms via alignment of triplet excited states. ACS Materials Letters. 2020, 2(11), 1412-8.
- 13 LiveDesign (2022). New York, NY: Schrodinger, LLC.